My Notes

Ibrahim Habib

Table of contents

Notes
I Papers
1 From Learning Models of Natural Image Patches to Whole Image Restoration
2 Natural Images, Gaussian Mixtures, and Dead Leaves
3 Deep Image Prior
Il Stanford Deep Generative Models Course
4 Introduction
5 Background
5.1 Overview of Genarative Model
5.2 The Curse of Dimensionality o ..
5.2.1 Independence Assumption L.
5.2.2 Conditional Independence Assumptions
5.3 Bayesian Network L
5.4 Discriminative vs Generative Models,
6 Autoregressive Models
6.1 Examples of Autoregressive Model L.
6.1.1 Fully Visible Sigmoid Belief Network (FVSBN)
6.1.2 Neural Autoregressive Density Estimation (NADE)
6.1.3 RNADE e
6.2 Autoencoders vs Autoregressive Models oL oL
6.3 Recurrent Neural Networks (RNNs)
6.4 Attention-Based Models
6.5 CNNs e
6.6 Disadvantages of Autoregressive Models
7 Maximum Likelihood Learning

7.1 Kullback-Leibler Divergence (KL-Divergence)

12

14
15

17
17
18
18
18
19
19

21
21
21
22
23
23
23
23
24
25

26

8 Variational Autoencoders (VAE) 28

8.1 Latent Variable Modelso 28
8.2 Mixture of Gaussians 28
8.3 Mixture Models e 29
8.4 Variational Autoencoder 29
8.5 Training L 31
References 32

Notes

Welcome to my notes website!

Part |

Papers

1 From Learning Models of Natural Image
Patches to Whole Image Restoration

These are the notes on Zoran & Weiss (2011).
o Background

— Learning Image Priors is quite valuable

Used for multiple tasks like image denoising and inpainting

Hard task because of the high-dimensionality of images

— Earlier work learned only small patches prior to reduce computation
¢ 3 Questions to Answer in the Paper

— Do patch priors that give high likelihoods yield better patch restoration (Better
Patch Priors —> Better Patch Restoration?)

— Do patch priors that give high likelihoods yield better image restoration (Better
Patch Priors —> Better Image Restoration?)

— Can we learn better patch priors?
¢ Do better batch Priors lead to better patch restoration?

— They trained several models on 50,000 8 by 8 patches

— Calculated the log-likelihood of each model on a set of unseen natural images (Mea-
sure of Better Priors)

— Calculated the performance in denoising using MAP estimates (Measure of Better
Patch Restoration)

— Found strong correlation

— Answer: Yes
e Do better batch Priors lead to better image restoration?

— First, How to restore image from patch priors?

*

3 earlier techniques are mentioned that are simple but weak

« The author describes a new framework that maximizes the EPLL (Expected-
Patch-Log-Likelihood) while ensuring the restored image is close to the cor-
rupted one

+ Minimize f,(x|y) = 3|Ax —y|?>— EPLL,(x)
* EPLL,(x) =) logp(P;x)

* Optimization is done using a method called “Half Quadratic Splitting” which
the paper describes in detail

* He describes extending this restoration task to denoising, deblurring, and in-
painting through changing the matrix A.

*x The author describes other techniques

- A common thing is averaging the clean patches to form final estimate of
the image

The author doesn’t do that

Used the priors from the previous section
— Used EPLL framework to restore 5 corrupted images

— Measured both patch likelihood and restored image quality (PSNR)

Found strong correlation

Answer: Yes

e Can we learn better patch priors?

The authors use a Gausian Mixture Model (GMM) with unconstrained covariance
matrix

Learning is done through Expectation Maximization Algorithm

Calculating the log likelihood of a patch is done through log p(x) = log(z:kK=1 TN (X e, 03))

— m, are the mixing weights

The BLS (mean or expected value of the posterior probability) can be calulated
easily through a closed form

— The MAP (mode or maximum of the posterior) is intractable but the other describe
a way to estimate it

— It outperforms other patch-based models in log likelihood, patch restoration, and
image restoration

— It outperforms SOTA generic prior models in image denoising

— It is competitive with image specific SOTA models in image denoising

2 Natural Images, Gaussian Mixtures, and
Dead Leaves

These are the notes for the paper Zoran & Weiss (2012).

o Unconstrained Gaussian Mixture Models (GMMSs) with a small number of mixture com-
ponents learned from patches perform exteremly good

— Valuable because
x They are simple

* Many of the current models are GMMs with exponential or infinite number of
components with constrained covariance matrix

e Paper Overview: A study of the nature of GMMs

— Proof GMMs are excellent at modeling natural images patches

— Analysis of properties of natural images captured by GMMs and relation to number
of components K

— Proof of strong connection between natural images statistics and a simple variant
of dead leaves models

e GMDMs are Really Goos for Natural Images Patches

— Compared GMM with 200 components to 8 other models
— Trained on patches from the Berkley Segementation Database and used its test set
— 3 Experiments

*x Log-Likelihood: GMM outperformed all models and similar performance to
Karklin and Lewicki

* Denoising:
- Added independent white Gaussian noise to the test set
Calculated MAP for each model given noisy patch
Evaluated performance using Peak Signal to Noise Ratio (PSNR)

*

GMDMs performed exceptionally well

Sample Quality: Generated samples from the models. No quantitative anal-
ysis, but the GMMs samples looked capturing the structure of natural images
like edges and textures

— GMMs are really good

— No claims of being the best

¢ Analysis of the results

— Adding more components to the GMM increases the performance; although, they
seem to be converging at an upper bound (this is shown experimentally)

— GMM as a Generative Process

*

You can generate a new sample from a GMM by choosing one of the K com-
ponents and sampling N independent Gaussian variables with mean 0 and
variance 1. Put these values in a vector and call it z.

To compute the sample, use x = V, D95z
V,, is the eigenvector matrix of 3,
D, is the eigenvalues matrix of ¥,

It can be shown that this operation make the random vector z follow the cor-
realtion structure of X,

Conclusion: To understand GMM, we need to understand their eigenvalues
and eigenvectors

— Eigenvalues and Eigenvectors of the First Components

*

*

*

*

Have very eigenvectors

Eigenvalues spectrum has very similar structure but differs with a multiplicative
constant

This is equivalent to using a Gaussian Scale Mixture model

These components capture the contrast variability of the image patches

— The Upcoming Components

*

*

Adding complements shows more specialized components capturing different
properties of the natural images

They capture textures and boundaries on various scales and orientations

e Mini Dead Leaves

10

— The mini dead leaves model is a variant of the dead leaves model proposed by the
authors that works on batches

— It divides patches into two types (flat and edges)

« Flat patches are sampled from a texture producing model (They use a GSM
trained on natural images)

x Edge patches randomly select an angle and distance from the center that divide
the patch into two parts. Each part is sample separately as a flat patch

— They model contrast and occlusions in images

— They created images using mini dead leaves and trained GMM and the other pre-
viously used models on the new images.

— The GMM performed incredibly well proving that its great performance on natural
images is probably due to its ability to model occulsions and contrast

— The mini dead leaves is weaker than GMM and expected to perform worse

* Primiarily due to weakness of GSM in modeling textures and the weak occlusion
creation strategy (a random straight line)

11

3 Deep Image Prior

These are the notes for Ulyanov et al. (2018)

¢ Main Point: The structure of ConvNets is sufficient to capture a great deal of low-level
statistics before any training

— The study focuses on the prior captured by a deep convolutional network, indepen-
dent of any training

e The Driving Reasoning

— ConvNets are SOTA for many image-related tasks (super-resolution, image recon-
struction, denoising, etc.)

— They are usually trained on huge datasets.

It can be assumed that large training datasets is the reason of the great performance,

but learning isn’t a sufficient explanation
— Generalization requires the structure of the network to resonate with the structure
of the data

e Their Method

— Basically, the authors fit a randomly initialized ConvNet on the noisy image and
use it for the generation task.
— The Task

* They consider inverse tasks such as denoising, super-resolution, and inpainting.
* Expressed as energy-minimization problem: z* = min, E(x;z,) + R(z)
E(x;z): Task dependendt data term (e.g. How similiar the reconstructed
image is to the noisy one?)
R(z) is a requalization term (e.g. the probability x occurs in nature as
determined by the prior of a pretrained model)
x is the noisy/low-resolution/occulded image
x* is the model’s predicted clean/high-resolution/inpainted image

*x Deep networks are applied by mapping a random code z to an image z: = =

f 9(2)
— Their method

x Instead of finding the parameters by training on a large dataset, they learn to
map z to the given

12

* 0 = argming E(fy(2);)
* and they set the regualizer to zero. Thus,
* xt = fo.(2)
— Why it works?
* It is expected that their model learns the noise in z,
* This doesn’t happen because the ConvNet architecture has high resistance to
learning noise and low resistance to learning the signal
* => the model learns the signal before it learns the noise
* => They stop training early before the model learns the noise

o Applications

— They apply their model to multiple tasks including denoising, super-resolution, in-
painting, etc.

— In all tasks, the model outperforms or is very close to the SOTA no-training models
and is close to those that train on large datasets

e To Summarize, ConvNets are really good image priors reagardless of the training data

13

Part 11l

Stanford Deep Generative Models
Course

14

4 Introduction

e Generative models view the world through the lens of probabilities

o Given a finite set of samples S generated from an underlying distribution p,,,,, the goal
of a generative model is to approximate p,,,, from S

e Parametric vs non-parameteric models

— The course will focus on parametric models.
— Parametric models can scale more efficiently with large datasets

— Parametric models are limited in the family of distributions they can represent
e Learning

— Given a dataset data, the goal is to find the parameters of a generative model 6
that closes the distance between p,,,, and p, (The model’s learnt distribution and
the real distribution)

— Stated mathematically

* minge,, d(p_data, py)
*+ Where d is a measure of distance between the two distributions and M is the
model’s family

— The problem: Current datasets are way too small in size compared with the possible
set of values covered by the true distribution

o Course Focus (Answer the following questions)

— What is the representation for the model family M ?
— What is the objective function d()?
— What is the optimization procedure for minimizing d()?

¢ 3 Fundamental Inference Queries for generative models

— Density estimation: Given a datapoint x what is the probability assigned by the
model, i.e., py(z)?
— Sampling: How can we generate novel data from the model distribution, i.e.,

Lrew ™ pe(ﬂi‘)?

15

— Unsupervised representation learning: How can we learn meaningful feature
representations for a datapoint x?

e Current Challenges

— Quantitative evaluation of generative tasks is not easy since current metrics fail to
reflect desirable qualitative metrics
— Not all model families permit efficient and accurate inference on all these tasks

16

5 Background

5.1 Overview of Genarative Model

The main task in generative models is to build a model that approximates a probability P,
from a set of data points sampled from the true distribution P,,,, (P, should be as close as
possible to P,,,, according to some distance measure)

d(PdataJPO)
P
Pdata

P

0eEM

Model family

Figure 5.1: High-Level View of Generative Models Tasks

We want to learn a probability distribution p(x) over data x (e.g., Images, Text, Protein
Sequence). These distributions could be used for

o Generation: Sample z,,.,, ~ p(z)
o Density Estimation: p(z) should be high if x is part of the data (anomaly detection)

¢ Unsupervised Representation Learning: Feature extraction

17

5.2 The Curse of Dimensionality

Representing p(z) is difficult for high-dimensional data (such as images and text). This is
easier, however, for simpler data. For example, a Categorical Distribution (n-sided cube) can
be parameterized using n — 1 parameters (one for the probability of each outcome and the last
is calculated from the first n — 1).

This isn’t the case for high-dimensional data. A single pixel in an image, for example, needs
256 * 256 * 256 — 1 parameters. For an image, the number of required parameters grows
exponentially with the number of pixels.

5.2.1 Independence Assumption

One way to simplify the structure is to assume independence

p(xy, ..y x,) = p(z)p(Ty)...p(2,)

This would require only n parameters (because p(x;) needs only one parameter) to model the
2™ images.

The problem is that this assumption is way too strong. For example, if you are generating
images, you are not allowed to see any other pixel value when extracting the value of a pixel.

5.2.2 Conditional Independence Assumptions

Using the chain rule, you can simplify a multivariate distribution to
(15 T,) = P(x1)p(To|@1)p(T3] 21, To) P (T [T, ooy Ty)
1
The number of parameters, however, is still exponential
14+2+...42vt=2"—1
2
This is calculated using the following logic

e p(x;) needs 1 parameter

IThis is the simplification used by autoregressive models, which are very popular with LLMs. That is predict
a token from the previously seen set of tokens.
2Assuming the total number of values x could take is 2

18

o p(xy|xr; = 0) needs 1 parameter and p(z4|z; = 1) needs 1 parameter for a total of 2
parameters

Assuming conditional independence (X, ; L {X;,..., X;_;}|X;) can simplify the math

(@ T,) = p(31)p(2o]2y)p(235]25). (2 | T 1)

Making the number of required parameters linear (2n — 1).

However, these models are still weak. We need more context to make better estimates. Using
only a single word isn’t enough to predict the next word.

5.3 Bayesian Network

Bayesian network adds more flexibility relative to the last discussed model by making variables
rely on a set of other variables (not strictly only one variable). That is, it specifies p(z;)|z 4,)
where z, is a set of random variables. In this case, the joint parameterization is

p(@y, .y Ty) = Hp<xz’$Al)

More formally, a Bayesian Network is a DAG where the nodes are random variables and
the edges are the dependence relationships between these variables. Each node has one condi-
tional probability distribution specifying the variable’s probability conditioned on its parents’
values.

Now the number of parameters is exponential in the number of parents, not the number of
variables.

5.4 Discriminative vs Generative Models

To show the differences, we will use an example of using Naive Bayes for single-label prediction:
classify emails as spam (Y = 1) or not (Y = 0). In this task, we are asked to model
p(y,xq,...,x,) where y is the label, 1 : n are the indices of the words in the vocabulary, X, is
a random value that is 1 if word ¢ appears in the email and 0 otherwise.

What Naive Bayes does is assume that words are conditionally independent given Y, making
the joint distribution

19

n

Py, X1, 2,) = p(y) [[p(:ly)

i=1

After estimating the parameters from the training data, prediction is done using the Bayes
rule

p(Y = DI, p(z,[Y =1)
> om PV =) [y p@lY = 1)

PY =1z, ...,z,) =

The independence assumption made here is that one word’s appearance in an email is inde-
pendent from another’s appearance.

This model is a generative one. It attempts to calculate p(Y, X) using p(Y, X) = p(Y)p(X[Y).
A discriminative model, on the other hand, uses p(Y,X) = p(X)p(Y|X).

In the generative case, we need to learn both P(Y) and p(X|Y) and then compute p(Y|X)
using Bayes rule. In the discriminative, you just need to estimate the conditional probability
p(Y|X). In the discriminative, you don’t have to model p(X), while the generative model does
learn the input features vector.

Discriminative models usually assume a functional form for the probability of the target con-
dition on the features. That is,

p(Y: HX,)Zf(x7)

For example, logistic regression assumes a linear relationship. Neural networks make it more
flexible by adding non-linearities.

To sum it all up, the generative model learns the full joint distribution, making it able to
predict anything from anything. Discriminative models learn only the relationship between
inputs and the target. This limits the uses of the discriminative model but makes the task
much simpler.

20

6 Autoregressive Models

Autoregressive models are one way of representing p(x) for a generative model.

The previous lecture discussed three ways to model a joint distribution:

1. Chain Rule:
o p(xy, g, @3, 24) = p(@1)p(@a|21)P(T3]21, To)P(T4|2 1, o, T3)
e Fully General
¢ No Assumptions

o Exponential Size
2. Bayes Network:

o P21, 39,23, 24) = Popr(@1)Popr(Ta|T)Popr(T5|22)Popr(T4]2:)

¢ Assumes conditional independence

o Uses tabular representation via conditional probability table (CPT)
3. Neural Models

® p(ml,x2,x3,x4) ~ p(xl)pNeural(xZ|x1>pNeu7“al(x3’x17x2>pNeural<x4|xl’x27x3>

e Assumes a specific form for the conditionals

We will use an example of training a model on MNIST, assuming each pixel can only be black

or white, and a total of 784 pixels.

To use an autoregressive model, we start by picking an order of all the random variables. It
uses the same format of Neural models, where each conditional is approximated with a function
on all the previous variables in the ordering. The function could be something simple (logistic

regression, for example) or a much more complex deep neural network.

6.1 Examples of Autoregressive Model

6.1.1 Fully Visible Sigmoid Belief Network (FVSBN)

The conditional variables X;| X}, ..., X;_; are Bernoulli with parameters

21

i—1
2, =p(X; =1y, .,z q50") = o(af + Y alz))
Jj—1

You evaluate the multivariable distribution by multiplying all the conditionals.
You can sample from the distribution by sampling one value at a time
o Sample 7, ~ p(z;)
o Sample T, ~ p(2y|2; = Z4)
Sampling here is relatively easy.
Conditional sampling isn’t easy. One example is image inpainting.

The number of parameters is

14243+...+n~~n?

This is a weak model due to the weakness of logistic regression.

6.1.2 Neural Autoregressive Density Estimation (NADE)

Use a neural network instead of logistic regression.

This may result in a lot of parameters. One way to simplify the number of parameters is to
tie the weights. That is repeat the weights for the same parameter.

W iho =

hp=o||w [x+c|h=c||wiws|(3)|h=c]||wiwaws|(

\ W. 4 c

Figure 6.1: Repeated Weights to Minimize the Parameter Count

Using a single hidden layer with dimension d, the number of parameters is O(nd).

22

6.1.3 RNADE

This is to model continuous data without discretizing it. This is done by making z, parame-
terize a continuous distribution. One example is using a mixture of K Gaussians.

6.2 Autoencoders vs Autoregressive Models

A vanilla autoencoder isn’t a generative model because it can’t be used to generate new data
points.

An autoencoder doesn’t enforce an ordering on the input variables. If it does, it becomes
an autoregressive model. To make the autoencoder a generative model, you have to make it
correspond to a valid Bayesian Network (DAG).

Using masks (a masked autoencoder), you can enforce the DAG structure.

6.3 Recurrent Neural Networks (RNNs)

RNNs keep a summary of the previously seen history (the past random variables) and keep
updating it as new information becomes available. The number of parameters is constant in
terms of n.

They are very slow in training because the calculation is sequential. Another issue is using
only a single vector to summarize all the history. This eases computation but is a huge
assumption.

6.4 Attention-Based Models

Attention-based models can access the hidden vectors for all the previous tokens when predict-
ing a new one. This is in contrast to the single vector used in RNNs.

This is done by comparing the set of query vectors with the new key vector. These values
are then merged together based on some method that decides which query vectors to focus on
more.

23

_-__“_) “!a
Attention ' Fovo A
Distribution : ' .
Similarity
scores :
J T N
‘ﬁ-‘_‘_\ \
—,
o O O (@]
of |0 J|o o
o] o O
o] [} (@]
My friend opened the door

Figure 6.2: Attention-based Models

The merged vector is then used to predict the next token.

6.5 CNNs

To use them in autoregressive models, you have to make sure the convolutions respect your
selected ordering and the model doesn’t peek into upcoming variables (pixels in the case of
working on images). This can be done using masked convolutions.

24

6.6 Disadvantages of Autoregressive Models

They are very hard to use for representation learning and unsupervised learning.

25

7/ Maximum Likelihood Learning

We are given a dataset 2 of m samples from P,,,,. We assume the samples are IID. We are
also given a family of models M. The task is to learn a model F,. That captures P,,,, from
the sampled data.

This task is hard because m is way, way too small compared to the number of possible states
of the variables.

To be able to extract the best model, we need to define the word best.

We need a measure of similarity between the two distributions Py and P, .
7.1 Kullback-Leibler Divergence (KL-Divergence)

D(pllg) = Zx:p(eg

This quantity is non-negative, equal to zero iff p = ¢, and asymmetric (D(p||q) # D(q||p))-

It measures the expected number of extra bits required to describe samples p(z) using a
compression code based on ¢ instead of p.

The KL divergence can be used for our task because

P, ata\ X
D<Pdata”P9) = EXNPdata[lng(d;@())]

This can be simplified to

D(Pdata‘ ’P9> = Ex~Pdam [lOg Pdata<x)] -]EXNPdam [log P9<X)]

Since the first term is constant in 6, you can just minimize

—E log Py(x)]

xNPda,ta. [

or equivalently maximize

26

Ex p,,., 108 Py(x)]

In other words, minimizing the KL-divergence is equivalent to maximizing the log-likelihood.

We can’t directly calculate the expectation because we don’t have access to P, ;,. What we
can compute is the empirical log-likelihood. This is done by approximating the expectation in
the following manner.

Epllog Py(x)] = —:

27

8 Variational Autoencoders (VAE)

8.1 Latent Variable Models

Latent variables z are hidden variables used to capture sources of variability in the data that
aren’t explicitly stated (e.g., gender, eye color, pose, hair color in human face images). These
variables are initialized randomly and trained through unsupervised learning. You may then
build a model that reasons conditioned on the latent variables. This is usually easier because
latent variables usually have a smaller dimension. That is p(x|z) is easier to model than p(x).
These variables usually correspond to high-level features.

Neural networks can be used to model the conditionals (deep latent variable models. Exam-
ples:
z~ N(0,I)
p(x|z) = N(pp(z), Xy(2))

where py(z) and ¥,(z) are neural networks.

8.2 Mixture of Gaussians

This is a Bayes net z — x where

z ~ Categorical(1, ..., K)

p(x|z = k) = N(pg, 0y)

28

X,

Figure 8.1: Mixture of Gaussians

8.3 Mixture Models

Using latent variables allows us to formulate p(x) as a mixture of simpler models, creating a
complex model from simpler ones. This is because

p(x) =Y p(x,2) = > p(z)p(x|z)

8.4 Variational Autoencoder

A mixture of an infinite number of Gaussians.

z~ N(0,1)

29

p(x|z) = N(ug(2), £4(2))

where py(z) and ¥,(z) are neural networks.
There is an infinite number of Gaussians because z is now continuous.
Once again, p(x|z) is simple but p(x), the mixture, is complex.

Calculating the probability of observing a certain training data point, &, because it involves
calculating an integral

In our setting, we have a dataset 2 where for each datapoint X are observed, but the variables
Z are never observed.

To train the model with maximum likelihood learning, we need to find 6 that maximizes

Zlogp(xﬂ Zlogprz@

xeD xeD

Evaluating) p(x,z,0) is intractable. For example, having 30 binary latent variables will
involve the sum of 23° terms. For continuous, the computation is also hard. The gradients
with respect to 6 are also hard to compute.

You could use Monte Carlo to approximate the hard-to-compute sum.

This is because

p0<$> = Z |’Z| Z |Z|p9 X, Z |Z‘[Ez~Uniform(Z) [Pe(xa Z)]

All values of z zel

Monte Carlo approximates the expected value through sampling & values for z uniformly at
random and approximating using

1 .
2l E 1P9(X=ZO)>
J]=

The problem here is that uniformly sampling z won’t work in the real world, and we need a
smarter way.

A better way is to use importance sampling.

30

— x.7) = @ X. 7 p0<X,Z)
pe(gﬁ)—AHw%;sofzpe(,Z) zezzq<z>p6< 2) = Eyqa) q(2)

and once again apply Monte Carlo, but this time sample from ¢(z).

Now we also need to train ¢(z) which will also be a neural network. We need to minimize
log py(x) . We can directly minimize this value, but we can minimize a lower bound for it

log py(x logz Z 2) log[”)Z)] =Y a(z)logpy(x,2)—) q(z)log q(z)

z z

where the inequality follows from Jensen’s inequality and the fact that the log function is
concave and H(q) is the entropy of ¢. This inequality holds for any ¢ with it being an equality
if ¢ = py(z|x). That is the optimal choice of ¢ is p,(z|x). We should try to choose ¢ as close
as possible to py(z|x).

In practice, we will train together ¢(z) (an encoder) and p(x|z) (a decoder) to minimize the
ELBO.

8.5 Training

31

= q(z)logpy(

z

References

Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2018). Deep image prior. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Zoran, D.,; & Weiss, Y. (2011). From learning models of natural image patches to whole
image restoration. 2011 International Conference on Computer Vision, 479-486. https:
//doi.org/10.1109/ICCV.2011.6126278

Zoran, D., & Weiss, Y. (2012). Natural images, gaussian mixtures and dead leaves. In F.
Pereira, C. J. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural informa-
tion processing systems (Vol. 25). Curran Associates, Inc. https://proceedings.neurips.cc
/paper__files/paper/2012/file/e97ee2054defb209¢35fe4dc94599061- Paper.pdf

32

https://doi.org/10.1109/ICCV.2011.6126278
https://doi.org/10.1109/ICCV.2011.6126278
https://proceedings.neurips.cc/paper_files/paper/2012/file/e97ee2054defb209c35fe4dc94599061-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/e97ee2054defb209c35fe4dc94599061-Paper.pdf

	Notes
	Papers
	From Learning Models of Natural Image Patches to Whole Image Restoration
	Natural Images, Gaussian Mixtures, and Dead Leaves
	Deep Image Prior

	Stanford Deep Generative Models Course
	Introduction
	Background
	Overview of Genarative Model
	The Curse of Dimensionality
	Independence Assumption
	Conditional Independence Assumptions

	Bayesian Network
	Discriminative vs Generative Models

	Autoregressive Models
	Examples of Autoregressive Model
	Fully Visible Sigmoid Belief Network (FVSBN)
	Neural Autoregressive Density Estimation (NADE)
	RNADE

	Autoencoders vs Autoregressive Models
	Recurrent Neural Networks (RNNs)
	Attention-Based Models
	CNNs
	Disadvantages of Autoregressive Models

	Maximum Likelihood Learning
	Kullback-Leibler Divergence (KL-Divergence)

	Variational Autoencoders (VAE)
	Latent Variable Models
	Mixture of Gaussians
	Mixture Models
	Variational Autoencoder
	Training

	References

